3.272 \(\int \frac {\sqrt {a-b x^2}}{\sqrt {-c-d x^2}} \, dx\)

Optimal. Leaf size=194 \[ \frac {\sqrt {a} \sqrt {1-\frac {b x^2}{a}} \sqrt {\frac {d x^2}{c}+1} (a d+b c) \operatorname {EllipticF}\left (\sin ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right ),-\frac {a d}{b c}\right )}{\sqrt {b} d \sqrt {a-b x^2} \sqrt {-c-d x^2}}+\frac {\sqrt {a} \sqrt {b} \sqrt {1-\frac {b x^2}{a}} \sqrt {-c-d x^2} E\left (\sin ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|-\frac {a d}{b c}\right )}{d \sqrt {a-b x^2} \sqrt {\frac {d x^2}{c}+1}} \]

[Out]

EllipticE(x*b^(1/2)/a^(1/2),(-a*d/b/c)^(1/2))*a^(1/2)*b^(1/2)*(1-b*x^2/a)^(1/2)*(-d*x^2-c)^(1/2)/d/(-b*x^2+a)^
(1/2)/(1+d*x^2/c)^(1/2)+(a*d+b*c)*EllipticF(x*b^(1/2)/a^(1/2),(-a*d/b/c)^(1/2))*a^(1/2)*(1-b*x^2/a)^(1/2)*(1+d
*x^2/c)^(1/2)/d/b^(1/2)/(-b*x^2+a)^(1/2)/(-d*x^2-c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 194, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {423, 427, 426, 424, 421, 419} \[ \frac {\sqrt {a} \sqrt {1-\frac {b x^2}{a}} \sqrt {\frac {d x^2}{c}+1} (a d+b c) F\left (\sin ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|-\frac {a d}{b c}\right )}{\sqrt {b} d \sqrt {a-b x^2} \sqrt {-c-d x^2}}+\frac {\sqrt {a} \sqrt {b} \sqrt {1-\frac {b x^2}{a}} \sqrt {-c-d x^2} E\left (\sin ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|-\frac {a d}{b c}\right )}{d \sqrt {a-b x^2} \sqrt {\frac {d x^2}{c}+1}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a - b*x^2]/Sqrt[-c - d*x^2],x]

[Out]

(Sqrt[a]*Sqrt[b]*Sqrt[1 - (b*x^2)/a]*Sqrt[-c - d*x^2]*EllipticE[ArcSin[(Sqrt[b]*x)/Sqrt[a]], -((a*d)/(b*c))])/
(d*Sqrt[a - b*x^2]*Sqrt[1 + (d*x^2)/c]) + (Sqrt[a]*(b*c + a*d)*Sqrt[1 - (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*Ellipti
cF[ArcSin[(Sqrt[b]*x)/Sqrt[a]], -((a*d)/(b*c))])/(Sqrt[b]*d*Sqrt[a - b*x^2]*Sqrt[-c - d*x^2])

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rule 421

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d*x^2)/c]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d*x^2)/c]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 423

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[b/d, Int[Sqrt[c + d*x^2]/Sqrt[a + b
*x^2], x], x] - Dist[(b*c - a*d)/d, Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x]
&& PosQ[d/c] && NegQ[b/a]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 426

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b*x^2)/a]
, Int[Sqrt[1 + (b*x^2)/a]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 427

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[1 + (d*x^2)/c]/Sqrt[c + d*x^2]
, Int[Sqrt[a + b*x^2]/Sqrt[1 + (d*x^2)/c], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] &&  !GtQ[c, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a-b x^2}}{\sqrt {-c-d x^2}} \, dx &=\frac {b \int \frac {\sqrt {-c-d x^2}}{\sqrt {a-b x^2}} \, dx}{d}+\frac {(b c+a d) \int \frac {1}{\sqrt {a-b x^2} \sqrt {-c-d x^2}} \, dx}{d}\\ &=\frac {\left (b \sqrt {1-\frac {b x^2}{a}}\right ) \int \frac {\sqrt {-c-d x^2}}{\sqrt {1-\frac {b x^2}{a}}} \, dx}{d \sqrt {a-b x^2}}+\frac {\left ((b c+a d) \sqrt {1+\frac {d x^2}{c}}\right ) \int \frac {1}{\sqrt {a-b x^2} \sqrt {1+\frac {d x^2}{c}}} \, dx}{d \sqrt {-c-d x^2}}\\ &=\frac {\left (b \sqrt {1-\frac {b x^2}{a}} \sqrt {-c-d x^2}\right ) \int \frac {\sqrt {1+\frac {d x^2}{c}}}{\sqrt {1-\frac {b x^2}{a}}} \, dx}{d \sqrt {a-b x^2} \sqrt {1+\frac {d x^2}{c}}}+\frac {\left ((b c+a d) \sqrt {1-\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}}\right ) \int \frac {1}{\sqrt {1-\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}}} \, dx}{d \sqrt {a-b x^2} \sqrt {-c-d x^2}}\\ &=\frac {\sqrt {a} \sqrt {b} \sqrt {1-\frac {b x^2}{a}} \sqrt {-c-d x^2} E\left (\sin ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|-\frac {a d}{b c}\right )}{d \sqrt {a-b x^2} \sqrt {1+\frac {d x^2}{c}}}+\frac {\sqrt {a} (b c+a d) \sqrt {1-\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} F\left (\sin ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|-\frac {a d}{b c}\right )}{\sqrt {b} d \sqrt {a-b x^2} \sqrt {-c-d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 92, normalized size = 0.47 \[ \frac {\sqrt {a-b x^2} \sqrt {\frac {c+d x^2}{c}} E\left (\sin ^{-1}\left (\sqrt {-\frac {d}{c}} x\right )|-\frac {b c}{a d}\right )}{\sqrt {-\frac {d}{c}} \sqrt {\frac {a-b x^2}{a}} \sqrt {-c-d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a - b*x^2]/Sqrt[-c - d*x^2],x]

[Out]

(Sqrt[a - b*x^2]*Sqrt[(c + d*x^2)/c]*EllipticE[ArcSin[Sqrt[-(d/c)]*x], -((b*c)/(a*d))])/(Sqrt[-(d/c)]*Sqrt[(a
- b*x^2)/a]*Sqrt[-c - d*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.92, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {-b x^{2} + a} \sqrt {-d x^{2} - c}}{d x^{2} + c}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x^2+a)^(1/2)/(-d*x^2-c)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-b*x^2 + a)*sqrt(-d*x^2 - c)/(d*x^2 + c), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {-b x^{2} + a}}{\sqrt {-d x^{2} - c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x^2+a)^(1/2)/(-d*x^2-c)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-b*x^2 + a)/sqrt(-d*x^2 - c), x)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 111, normalized size = 0.57 \[ \frac {\sqrt {-b \,x^{2}+a}\, \sqrt {-d \,x^{2}-c}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {-\frac {b \,x^{2}-a}{a}}\, a \EllipticE \left (\sqrt {-\frac {d}{c}}\, x , \sqrt {-\frac {b c}{a d}}\right )}{\left (b d \,x^{4}-a d \,x^{2}+b c \,x^{2}-a c \right ) \sqrt {-\frac {d}{c}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-b*x^2+a)^(1/2)/(-d*x^2-c)^(1/2),x)

[Out]

(-b*x^2+a)^(1/2)*(-d*x^2-c)^(1/2)*a*((d*x^2+c)/c)^(1/2)*(-(b*x^2-a)/a)^(1/2)*EllipticE((-1/c*d)^(1/2)*x,(-1/a*
b*c/d)^(1/2))/(b*d*x^4-a*d*x^2+b*c*x^2-a*c)/(-1/c*d)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {-b x^{2} + a}}{\sqrt {-d x^{2} - c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x^2+a)^(1/2)/(-d*x^2-c)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-b*x^2 + a)/sqrt(-d*x^2 - c), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {a-b\,x^2}}{\sqrt {-d\,x^2-c}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a - b*x^2)^(1/2)/(- c - d*x^2)^(1/2),x)

[Out]

int((a - b*x^2)^(1/2)/(- c - d*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a - b x^{2}}}{\sqrt {- c - d x^{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x**2+a)**(1/2)/(-d*x**2-c)**(1/2),x)

[Out]

Integral(sqrt(a - b*x**2)/sqrt(-c - d*x**2), x)

________________________________________________________________________________________